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1 Values of parameters appearing in Eq. 1 of main text

The value of the membrane bending rigidity κm is typically between 10 kT and 25 kT [1]. In our
analysis we keep the value fixed at 20 kT . We choose the spontaneous curvature of the protein
coat, cp, to be 1/45 nm. The reasoning behind this choice is that the most abundant proteins in
the coat, clathrin and its adapter AP-2, are known to form clathrin baskets of similar curvature
[2]. We choose the curvature of a pit, c̄ = 1/R = 1/50 nm, and assume that it does not change as
the pit grows in size. This assumption is satisfied if σ ≪ κp, in which case the curvature can be
written as (see Eq. 3 in the main text)

c̄ =
κpcp

κp + κm
=

1

50
. (S1)

Substituting the values of κm and cp in the above equation, we get κp = 200 kT . This value is
comparable to, but less than, the bending modulus of a CCV (approximately 285 kT ) determined
by atomic force microscopy [3]. The effective binding energy b is a free parameter in our analysis.
We determine its value by fitting experimental data on lifetime distribution of CCPs. However, to
get a lower bound estimate for b we use the idea that in a CCV the total binding energy must be
comparable to the total bending energy. The energy required to bend a flat cell membrane into a
spherical vesicle is 8πκm ≈ 500 kT [4]. In our model, a vesicle has 100 monomers, so the effective
binding energy b has to be at least 500 kT/100 = 5 kT . Thus, in our analysis we search for b value
in the vicinity of 5 kT . The edge energy constant σ is also a free parameter in our analysis. Since
the edge energy is a correction to the binding energy, the value of σ should be less than b. In our
simulations, we search for σ value in the vicinity of 1 kT . A CCV of radius R = 50nm contains
approximately N = 100 clathrin molecules [5]. Thus the average area occupied by a monomer,
λ = 4πR2/N = 314 nm2. In our analysis we choose λ = 310 nm2.

2 Monte Carlo simulations of lifetime distribution of abortive pits

During TIRF measurements, when a CCP first becomes visible under the microscope, it already
has assembled into a structure containing several clathrin molecules. To make our simulations
commensurate with the experiments, we assume that at t = 0, a pit has 5 monomers. We also
assume that if the number of monomers on a pit falls to 4, such occurrence results in termination
of the pit.

The lifetime distribution of abortive pits were obtained through kinetic Monte Carlo simulation
[6]. The simulation algorithm is the following:

1. Start with pit of size n = 5. Set time t = 0.
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2. Form a list of all the rates of possible transition. In our case, a pit of size n can grow to size
n+ 1 or decay to size n− 1 with rate constants αn and βn respectively.

3. Calculate the cumulative rate K = αn + βn.

4. Generate a random number ξ1, uniformly distributed between 0 and 1.

5. If ξ1 > βn/K, increase CCP size by 1, otherwise decrease it by 1.

6. Increment the time as t = t − log(ξ2)/K, where ξ2 is also a random number uniformly
distributed between 0 and 1.

7. Return to step to step 1 until n = 4 or n = N = 100 (vesicle size). When n = 4 (abortive
fate) or 100 (productive fate), stop the simulation and record the fate, and time t as the
lifetime of the pit.

3 Number of available binding sites on the perimeter of a pit

Consider a pit (partially formed sphere) of radius R = 1/c̄, where c̄ is the curvature (see Fig. S1).
Let λ be the average area occupied by a monomer in a pit. Let r be the radius of the circular
periphery of the pit. Using spherical coordinates (r, θ, ϕ), the surface area of the pit can be written
as

A(θ) = 2πr2[1− cos(θ)] = λn. (S2)

This leads to

cos(θ) = 1− A

2πR2
= 1− λnc̄2

2π
. (S3)

From the above equation, we get the radius of the circular periphery to be

r(n) = R sin(θ) = R
√

[1 + cos(θ)][1− cos(θ)] =

√
λn

π
×
√

1− λnc̄2

4π
. (S4)

Thus, the number of available binding sites on the periphery of the pit is

f(n) =
2πr(n)

d
=

2π

d

√
λn

π

√
1− λnc̄2

4π
, (S5)

where d is the average span of a monomer. We use Eq. S5 in the main text.
For a vesicle containing 100 clathrin molecules, the enumeration of clathrin shows that their

number on the edge, when the vesicle is half complete (hemisphere), is approximately 10. We find
that for d = 1.8

√
λ the number of available binding sites when pit is close to a hemisphere is around

10 (see Fig. S2). Therefore, we choose d = 1.8
√
λ.

4 Lifetime distribution of CCPs in Ref. [7]

Fig. 1D in Ref. [7] contains the plot of the lifetime distribution of CCPs. The plot includes the
lifetimes of both abortive and productive CCPs. Since we are interested in the lifetime distribution
of abortive CCPs, we make the assumption that all the data points with lifetimes less than 30 sec
correspond to the abortive CCPs. In addition, in Ref. [7] to get rid of the transient, highly motile
structures CCPs with lifetime less than 2 sec were not considered. Thus, while calculating the
lifetime distribution of abortive pits, shown in Fig. 3 of the main text, we consider only the abortive
pits with lifetime greater than 2 sec.
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Figure S1: Spherical cap representing the assumed shape of a pit in our model.
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Figure S2: Available binding sites on the periphery of a pit of radius 50 nm, as a function of pit
size, n.
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5 Detailed balance

The condition of detailed balance implies that, at equilibrium, the net flux between sites n and
n+ 1 must be zero, i.e.,

αnP
eq
n = βn+1P

eq
n+1, (S6)

where P eq
n is the equilibrium distribution. At equilibrium, P eq

n ∼ exp[−F (n)], where F (n) =
E(n) − nkT ln(mv0) is the free energy of a pit of size n, m is the concentration of free monomers
and v0 is a quantity that has units of volume. The backward rate constants then can be written as

βn+1 = αn
P eq
n

P eq
n+1

= αn exp[F (n+ 1)− F (n)]. (S7)

Substituting the formula for the forward rate constant used in the main text, i.e., αn = kbmf(n),
n = 1, 2, ...., N − 1, in the above equation we get

βn+1 =
kb
v0

f(n) exp[E(n+ 1)− E(n)] = µf(n) exp[E(n+ 1)− E(n)], (S8)

where µ = kb/v0. In the main text we use the form of backward rate constant given in Eq. S8.
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